Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress

نویسندگان

  • Chaoqiang Jiang
  • Chaolong Zu
  • Dianjun Lu
  • Qingsong Zheng
  • Jia Shen
  • Huoyan Wang
  • Decheng Li
چکیده

The mechanism of selenium-mediated salt tolerance has not been fully clarified. This study investigated the possible role of selenium (Se) in regulating maize salt tolerance. A pot experiment was conducted to investigate the role of Se (0, 1, 5 and 25 μM Na2SeO3) in photosynthesis, antioxidative capacity and ion homeostasis in maize under salinity. The results showed that Se (1 μM) relieved the salt-induced inhibitory effects on the plant growth and development of 15-day-old maize plants. Se application (1 μM) also increased the net photosynthetic rate and alleviated the damage to chloroplast ultrastructure induced by NaCl. The superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were increased, and ZmMPK5, ZmMPK7 and ZmCPK11 were markedly up-regulated in the roots of Se-treated plants, likely contributing to the improvement of antioxidant defence systems under salinity. Moreover, 1 μM Se increased K+ in the shoots while decreasing Na+ in the roots, indicating that Se up-regulates ZmNHX1 in the roots, which may be involved in Na+ compartmentalisation under salinity. The findings from this single experiment require repetition together with measurement of reactive oxygen species (ROS), but nevertheless suggest that exogenous Se alleviates salt stress in maize via the improvement of photosynthetic capacity, the activities of antioxidant enzymes and the regulation of Na+ homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تحمل به تنش شوری در چهار هیبرید ذرت (Zea mays L.) در مرحله گیاهچه ای

     Salinity stress is one of the most important abiotic stresses that effects on many agronomic, nutritional, physiological and biochemical processes of crops. A factorial experiment based on completely randomize design with four replications under laboratory conditions with four maize hybrids (SC640, SC704, SC740 and SC Simon) and three levels of salt stress (0, 100 and 200 mM NaCl) was carr...

متن کامل

Maize (Zea mays L.) yield and aflatoxin accumulation responses to exogenous glycinebetaine application

Exogenously applied glycinebetaine (GB) accumulates at high levels in maize (Zea mays L.). Under water deficit and high temperature conditions GB application produces yield benefits. These sub-optimum conditions often result in high levels of aflatoxin accumulation which reduces grain quality. A 3-year (2008, 2009 and 2010) field experiment was conducted to determine the effects of GB on ma...

متن کامل

Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition

Triticum aestivum L. and Zea maize L. are both sensitive to salinity stress which is a major problem faced by farmers today. In the present study, the effect of chitosan, a biologic elicitor under salinity stress was examined on growth parameters and biochemical markers in maize and wheat s...

متن کامل

Degree of salt tolerance in some newly developed maize (Zea mays L.) varieties. Maria Zahoor*, Rehana Khaliq, Zafar Ullah Zafar and Habib-ur-Rehman Athar

Salinity is a major abiotic-stress worldwide which decreases crop growth productivity. The objective of the present study was to investigate whether salt stress has adverse effects on growth, photosynthetic efficiency, biochemical properties and nutrient status of maize. An experiment was carried out with seeds of four varieties of maize which were allowed to germinate for one week. Afterwards,...

متن کامل

Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress

The effects of non-enzymatic antioxidative compounds such as ascorbic acid, thiamine HCl and β-carotene were investigated on salt stressed maize plants. The maize plants were sprayed with 100 mg L of ascorbic acid, thiamine or β-carotene solutions once a week, up to harvesting of plants. The treatment of NaCl was initiated 25 days after sowing by irrigating the plants with 125 mM NaCl solution....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017